
Josh Barr

Scaling UI @ Xero

Architect at Xero

Before that, Tech Director at Springload

Before that, Graphic Designer

“It’s just the navigation,
how hard can it be?”

A distributed product team is hard to wrangle!

~2000 staff

~900 people work in product

4 time zones for product development

We had a bug with this widget...

Releasing the fix took 2 months.

It involved raising PRs to twelve projects.

We had to coordinate 20 people in 3 countries.

To change a few lines of JS.

#Beautiful is one of our values.

This doesn’t feel very #Beautiful.

The big blue app

Xero has lots of web applications.

Some acquired (Payroll, Workflow Max)

Many of them built in house

About 16 in the “blue” product.

Teams run independent stacks for their apps

In-page widgets built in different cities

Melbourne
Auckland

New York

Wellington

It’s textbook Conway’s law - right up to the DNS!

Vintage WSDL for getting menu

Custom renderer that only works
with dotnet full framework

We have apps in node, python,
dotnet core, etc.

Can’t easily iterate on our wayfinding system

Can’t respond quickly to potential vulnerabilities

Teams can’t choose their tech stack

Apps are diverging (sometimes in subtle ways)

Why does this widget look different on this one page?

We’re not the only ones to have

these kinds of challenges.

Different design!

Different width!

We want to:

Change the wayfinding quickly

Show wayfinding experiments to different users

Ship cross-cutting UI features to all 16 apps

Aggregation API for Navigation

User’s Browser

XeroWeb

Navigation API Payroll

Redis cacheFixed Assets

Feature toggles

Permissions

Organisation API

etc...

A really simple API contract

A really simple API contract

Supply everything a team needs to show the
navigation in a single response

Minimum viable Xero page

That was easy!
Push to master, deploy, profit … right?

SCALE
OH NOES!

1000
Req/sec

1m+
Monthly active users

Xero handles a lot of web traffic

A central navigation API is a calculated risk:

Participates in every page request across the web platform

Sustained high load (50 million requests/day at peak)

Data from several sources (favourites, contacts, permissions, etc)

Needs to be very fault tolerant.

Migration strategy: Watch & learn.

Pick an “off peak” time of the year.

Migrated lower traffic apps first, over a week

Migrated main app incrementally over the second week

NewRelic APM has been our eyes and ears

Debugging slowness in External Services

APM is really, really good at this!

Sometimes, things just take the time they take.

We couldn’t make some dependencies any faster

Back to the drawing board

User’s Browser

XeroWeb

Navigation API Payroll

Redis cacheFixed Assets

Feature toggles

Permissions

Organisation API

etc...

Public gateway

Splitting the workload into fast and slow queries

Splitting the workload into fast and slow queries

Hit a public endpoint to get the slow stuff

Favourites are fetched asynchronously after page load

The “shell” of the navigation is delivered quickly (35% under 10ms)

Expensive queries don’t block the page load

We can keep making this faster!

What about when things go wrong?

We depend on lots of other stuff.

Fault tolerance in HTTP

Network layer

Linkerd (DNS, flexible request routing, retry budgets etc)

In process:

Polly (retries, timeouts, circuit breaker)

Keep the lights on!

Do everything we can to avoid returning 500

Handling 50 million requests/day

8
c5.xlarges

25
Docker containers

1
t2.small Redis

This isn’t perfect – but it’s a huge step forward for managing our

super-distributed product UI.

Now that we’ve built the plumbing, we can start exploring

Service Workers, adding Local Storage caching, etc.

I’ll be writing something for our dev blog about this.

There’s lots more to cover off (Service meshing with linkerd,

optimised logging, dotnet core deployments)

https://devblog.xero.com/

